
DN3
Release 0.0.1

Demetres Kostas

Nov 30, 2020

GUIDES

1 The Configuratron 3

2 Datasets 11

3 Metrics 13

4 Trainables 15

5 Transformations and Preprocessors 17

6 Configuratron 19

7 Datasets 23

8 Neural Network Building Blocks 31

9 Processes 39

10 Transforms 45

11 Indices and tables 47

Python Module Index 49

Index 51

i

ii

DN3, Release 0.0.1

This Python package is an effort to bridge the gap between the neuroscience library MNE-Python and the deep learning
library PyTorch. This package’s main focus is on minimizing boilerplate code, rapid deployment of known solutions,
and increasing the reproducibility of new deep-learning solutions for the analysis of M/EEG data (and may be com-
patible with other similar data. . . use at your own risk).

Access to the code can be found at https://github.com/SPOClab-ca/dn3

The image above sketches out the structure of how the different modules of DN3 work together, but if you are new,
we recommend starting with the configuration guide.

GUIDES 1

https://github.com/SPOClab-ca/dn3

DN3, Release 0.0.1

2 GUIDES

CHAPTER

ONE

THE CONFIGURATRON

High-level dataset and experiment descriptions

• Why do I need this?

• A Little More Specific

• A Full Concrete Example

• That’s great, but what’s up with that ‘architecture’ entry?

• MOAR! I’m a power user

• Complete listing of configuratron (experiment level) options

– Optional entries

• Complete listing of dataset configuration fields

– Required entries

– Special entries

– Optional entries

– Experimental/Risky Options

1.1 Why do I need this?

Configuration files are perhaps where the advantages of DN3 are most apparent. Ostensibly, integrating multiple
datasets to train a single process is as simple as loading files of each dataset from disk to be fed into a common deep
learning training loop. The reality however, is rarely that simple. DN3 uses YAML formatted configuration files to
streamline this process, and better organize the integration of many datasets.

Different file formats/extensions, sampling frequencies, directory structures make for annoying boilerplate with minor
variations. Here (among other possible uses) a consistent configuration framework helps to automatically handle the
variations across datatsets, for ease of integration down the road. If the dataset follows (or can be made to follow) the
relatively generic directory structure of session instances nested in a single directory for each unique person, simply
provided the top-level of this directory structure, a DN3 Dataset can be rapidly constructed, with easily adjustable
configuration options.

Alternatively, if your dataset is all lumped into one folder, but follows a naming convention where the subject’s name
and the session id are embedded in a consistent naming format, e.g. My-Data-S01-R0.edf and My-Data-S02-R1.edf,
two consistently formatted strings with two subjects (S01 and S02) and two runs (R0 and R1 - note that either subjects

3

https://yaml.org/

DN3, Release 0.0.1

or runs could also have been the same string and remained valid). In this case, you can use a (very pythonic) formatter
to organize the data hierarchically: filename_format: “My-Data-{subject}-{session}”

1.2 A Little More Specific

Say we were evaluating a neural network architecture with some of our own data. We are happy with how it is currently
working, but want to now evaluate it against a public dataset to compare with other work. Most of the time, this means
writing a decent bit of code to load this new dataset. Instead, DN3 proposes that it should be as simple as:

public_dataset:
toplevel: /path/to/the/files

As far as the real configuration aspect, perhaps this dataset has a unique time window for its trials? Is the dataset
organized using filenames like the above “My-Data” example rather than directories? In that case:

public_dataset:
toplevel: /path/to/the/files
filename_format: "My-Data-{subject}-{session}"
tmin: -0.1
tlen: 1.5

Want to bandpass filter this data between 0.1Hz and 40Hz before use?

public_dataset:
toplevel: /path/to/the/files
filename_format: "My-Data-{subject}-{session}"
tmin: -0.1
tlen: 1.5
hpf: 0.1
lpf: 40

Hopefully this illustrates the advantage of organized datasets and configuration files, no boilerplate needed, you’ll get
nicely prepared and consistent dataset abstractions (see Datasets). Not only this, but it allows for people to share their
configurations, for better reproducibility.

1.3 A Full Concrete Example

It takes a little more to make this a DN3 configuration, as we need to specify the existence of an experiment. Don’t
panic, it’s as simple as adding an empty Configuratron to the yaml file that makes your configuration. Consider the
contents of ‘my_config.yml’:

Configuratron:

datasets:
in_house_dataset:
name: "Awesome data"
tmin: -0.5
tlen: 1.5
picks:

- eeg
- emg

public_dataset:
(continues on next page)

4 Chapter 1. The Configuratron

DN3, Release 0.0.1

(continued from previous page)

toplevel: /path/to/the/files
tmin: -0.1
tlen: 1.5
bandpass: [0.1, 40]

architecture:
layers: 2
activation: 'relu'
dropout: 0.1

The important entry here is Configuratron, that confirms this is an entry-point for the configuratron, and datasets that
lists the datasets we could use. The latter can either be named entries like the above, or a list of unnamed entries.

Now, on the python side of things:

from dn3.data.config import ExperimentConfig

experiment = ExperimentConfig("my_config.yml")
for ds_name, ds_config in experiment.datasets():

dataset = ds_config.auto_construct_dataset()
Do some awesome things

The dataset variable above is now a DN3 Dataset, which now readily supports loading trials for training or separa-
tion according to people and/or sessions. Both the in_house_dataset and public_dataset will be available.

1.4 That’s great, but what’s up with that ‘architecture’ entry?

There isn’t anything special to this, aside from providing a convenient location to add additional configuration values
that one might need for a set of experiments. These fields will now be populated in the experiment variable above. So
now, experiment.architecture is an object, with member variables populated from the yaml file.

1.5 MOAR! I’m a power user

One of the really cool (my Mom says so) aspects of the configuratron is the addition of !include directives. Aside
from the top level of the file, you can include other files that can be readily reinterpreted as YAML, as supported by
the pyyaml-include project. This means one could specify all the available datasets in one file called datasets.yml and
include the complete listing for each configuration, say config_shallow.yml and config_deep.yml by saying datasets:
!include datasets.yml. Or you could include JSON architecture configurations (potentially backed by your favourite
cloud-based hyperparameter tracking module).

More directives might be added to the configuratron in the future, and we warmly welcome any sugges-
tions/implementations others may come up with.

Further, that Configuratron entry above also allows for a variety of experiment-level options, which allows for common
sets of channels, automatic adjustments of sampling frequencies and more. The trick is you need to keep reading.

1.4. That’s great, but what’s up with that ‘architecture’ entry? 5

https://github.com/tanbro/pyyaml-include

DN3, Release 0.0.1

1.6 Complete listing of configuratron (experiment level) options

1.6.1 Optional entries

use_only (list) A convenience option, whose purpose is to filter from datasets only the names in this list. This allows
for inclusion of a large dataset file, and referencing certain named datasets. In this case, the names are the yaml
key referencing the configuration.

deep1010 (bool) This will normalize and map all configuratron generated datasets using the MappingDeep1010
transform. This is on by default.

samples (int) Providing samples will enforce a global (common) length across all datasets (probably want to use this
in conjunction with the sfreq option below).

sfreq (float) Enforce a global sampling frequency, down or upsampling loaded sessions if necessary. If a session
cannot be downsampled without aliasing (it violates the nyquist criterion), a warning message will be printed,
and the session will be skipped.

preload (bool) Whether to preload recordings for all datasets. *This is overridden by individual preload options for
dataset configurations.

trial_ids (bool) Whether to return an id (long tensor) for which trial within each recording each data sequence re-
turned by the constructed dataset.

1.7 Complete listing of dataset configuration fields

1.7.1 Required entries

toplevel (required, directory) Specifies the toplevel directory of the dataset.

1.7.2 Special entries

filename_format (str) The special entry will assume that after scanning for all the correct type of file, the subject
and session (or in DN3-speak, the Thinker and Recording) name can be parsed from the filepath. This should
be a python-format-style string with two required substrings: {subject} and {session} that form a template for
parsing subject and session ids from the path. Note, the file extension should not be included, and fixed length
can be specified by trailing :N for length N, e.g. {subject:2} for specifically 2 characters devoted to subject ID.

The next few entries are superseded by the Configuratron entry samples, which defines a global number of samples
parameter. If this is not the case, one of the following two is required.

tlen (required, float) The length of time to use for each retrieved datapoint. If epoched trials (see
EpochTorchRecording) are required, tmin must also be specified.

samples (required-ish, float) As an alternative to tlen, for when you want to align datasets with pretty similar sam-
pling frequencies, you can specify samples. If used, tlen is ignored (and not needed) and is inferred from the
number of samples desired.

6 Chapter 1. The Configuratron

DN3, Release 0.0.1

1.7.3 Optional entries

tmin (float) If specified, epochs the recordings into trials at each event (can be modified by events config below) onset
with respect to tmin. So if tmin is negative, happens before the event marker, positive is after, and 0 is at the
onset.

baseline (list, None) This option will only be used with epoched data (tmin is specified). This is simply propagated
to the Epoch’s constructor as is. Where None can be specified using a tilde character: ~, as in baseline: [~, ~] to
use all data for basline subtraction. Unlike the default constructor, here by default, no baseline correction is
performed.

events (list, map/dict) This can be formatted in one of three ways:

1. Unspecified - all events parsed by find_events(), falling-back to events_from_annotations()

2. A list of event numbers that filter the set found from the above.

3. A list of events (keys) and then labels (values) for those events, which filters as above, e.g.:

events:
T1: 5
T2: 6

The values should be integer codes, if both sides are numeric, this is used to map stim channel events to
new values, otherwise (if the keys are strings), the annotations are searched.

In all cases, the codes from the stim channel or annotations will not in fact correspond to the subsequent labels
loaded. This is because the labels don’t necessarily fit a minimal spanning set starting with 0. In other words, if
I had say, 4 labels, they are not guaranteed to be 0, 1, 2 and 3 as is needed for loss functions downstream.

The latter two configuration options above do however provide some control over this, with the order of the
listed events corresponding to the index of the used label. e.g. left_hand and right_hand above have class labels
0 and 1 respectively.

If the reasoning for the above is not clear, not to worry. Just know you can’t assume that annotated event 1 is label
1. Instead use EpochTorchRecording.get_mapping() to resolve labels to the original annotations or
event codes.

annotation_format (str) In some cases, annotations may be provided as separate (commonly edf) files. This string
should specify how to match the annotation file, optionally using the subject and session ids. This uses stan-
dard unix-style pattern matching, augmented with the ability to specify the subject with {subject(:. . .)} and the
session with {session(:. . .)} as is used by filename_format. So one could use a pattern like: “Data--{subject}-
annotation”. **Note, now by default, any file matching the annotation pattern is also excluded from being loaded
as raw data.*

targets (int) The number of targets to classify if there are events. This is inferred otherwise.

chunk_duration (float) If specified, rather than using event offsets, create events every chunk_duration seconds,
and then still use tlen and tmin with respect to these events. This works with annotated recordings, and not
recordings that rely on `stim` channels.

picks (list) This option can take two forms:

• The names of the desired channels

• Channel types as used by MNE’s pick_types()

By default, will select only eeg and meg channels (if meg, will try to automatically resolve as described here)

exclude_channels (list) This is similar to the above, except it is a list of nix pattern match exclusions. Which means
it can be the channel names (that you want to exclude) themselves, or use wildards such as “FT” or, “F[!39]”.

1.7. Complete listing of dataset configuration fields 7

https://mne.tools/stable/generated/mne.Epochs.html
https://mne.tools/stable/generated/mne.find_events.html
https://mne.tools/stable/generated/mne.events_from_annotations.html
https://mne.tools/stable/generated/mne.pick_types.html
https://mne.tools/stable/generated/mne.pick_types.html

DN3, Release 0.0.1

The first excludes all channels beginning with FT, the second, excludes all channels beginning with F except F3
and F9.

rename_channels (dict) Using this option, key’s are the new name, and values are nix-style pattern matching strings
for the old channel names. *Warning if an old channel matches to multiple new ones, new channel used is
selected arbitrarily. Renaming is performed before exclusion.

decimate (bool) Only works with epoch data, must be > 0, default 1. Amount to decimate trials.

name (string) A more human-readable name for the dataset. This should be used to describe the dataset itself, not
one of (potentially) many different configurations of said dataset (which might all share this parameter).

preload (bool) Whether to preload the recordings from this dataset. This overrides the experiment level preload
option. Note that not all data formats support preload: False, but most do.

hpf (float) This entry (and the very similar lpf option) provide an option to highpass filter the raw data before anything
else. It also supercedes any `preload`ing options, as the data needs to be loaded to perform this. It is specified
in Hz.

lpf (float) This entry (and the very similar hpf option) provide an option to lowpass filter the raw data before anything
else. It also supercedes any `preload`ing options, as the data needs to be loaded to perform this. It is specified
in Hz.

extensions (list) The file extensions to seek out when searching for sessions in the dataset. These should include the
‘.’, as in ‘.edf’ . This can include extensions not handled by auto_construction. A handler must then be provided
using DatasetConfig.add_extension_handler()

stride (int) Only for RawTorchRecording. The number of samples to slide forward for the next section of raw
data. Defaults to 1, which means that each sample in the recording (aside from the last sample_length -
1) is used as the beginning of a retrieved section.

drop_bad (bool) Whether to ignore any events annotated as bad. Defaults to False

data_max (float, bool) The maximum value taken by any recording in the dataset. Providing a float will assume this
value, setting this to True instead automatically determines this value when loading data. These are required for
a fully-specified use of the Deep1010 mapping.

CAUTION: this can be extremely slow. If specified, the value will be printed and should probably be explicitly
added to the configuration subsequently.

data_min (float, bool) The minimum value taken by any recording in the dataset. Providing a float will assume this
value, setting this to True instead automatically determines this value when loading data. These are required for
a fully-specified use of the Deep1010 mapping.

CAUTION: this can be extremely slow. If specified, the value will be printed and should probably be explicitly
added to the configuration subsequently.

dataset_id (int) This allows datasets to be given specific ids. By default, none are provided. If set to an int, this
dataset will have this integer `dataset_id.

exclude_people (list) List of people (identified by the name of their respective directories) to be ignored. Supports
Unix-style pattern matching within quotations (*, ?, [seq], [!seq]).

exclude_sessions (list) List of sessions (files) to be ignored when performing automatic constructions. Supports
Unix-style pattern matching within quotations (*, ?, [seq], [!seq]).

exclude (map/dict) This is a more extensively formatted version of exclude_people and exclude_sessions from above.
Here, people, sessions and timespans (specified in seconds) can be excluded using a hierarchical representation.
The easiest way to understand this is by example. Consider:

exclude_people:
- Person01

(continues on next page)

8 Chapter 1. The Configuratron

DN3, Release 0.0.1

(continued from previous page)

exclude:
Person02: ~
Person03:

Session01: ~
Person04:
Session01:

- [0, 0.5]
Session02:

- [0, 0.5]
- [100, 120]

The above says that Person01 and Person02 should both be completely ignored. Session01 from Person03
should be similarly ignored (with any other Person03 session left available). Finally for Person04 the data
between 0 and 0.5 seconds of Session01 in addition to both the times between 0 and 0.5 and 100 and 120
seconds from Session02 should be ignored. If

In summary, it allows more fine-grained exclusion without pattern matching, and can be used in conjunction
with the other exclusion options. For those familiar with MNE’s bads system, it is not used here, this allows for
config files to be shared rather than annotated copies of the original data. Further, this allows for easier by-hand
editing.

1.7.4 Experimental/Risky Options

load_onthefly (bool) This overrides any preload values (for the dataset or experiment) and minimizes memory over-
head from recordings at the cost of compute time and increased disk I/O. This is only really helpful if you have a
dataset so large that mne’s Raw instances start to fill your memory (this is not impossible, so if you are running
out of memory, try switching on this option). Currently this does not work with epoched data.

1.7. Complete listing of dataset configuration fields 9

DN3, Release 0.0.1

10 Chapter 1. The Configuratron

CHAPTER

TWO

DATASETS

• Returning IDs

For the most part, DN3 datasets are a simple wrapping around MNE’s Epoch and Raw objects, with the intent of:

1. Providing a common API to minimize boilerplate around common divisions of data at the session, person and
dataset boundaries

2. Encouraging more consistency in data loading across multiple projects.

3. Integration of (CPU bound) transformations operations, executed on-the-fly during deep network training

Thus there are three main interfaces:

1. The Recording classes

• RawTorchRecording and EpochTorchRecording

2. The Thinker class, that collects a set of a single person’s sessions

3. The Dataset class, that collects a set of multiple Thinker that performed the same task under the same
relevant context (which in most cases means all the subjects of an experiment).

2.1 Returning IDs

At many levels of abstraction, particularly for Thinker and Dataset , there is the option of returning identifying
values for the context of the trial within the larger dataset. In other words, the session, person, dataset, and task ids can
also be acquired while iterating through these datasets. These will always be returned sandwiched between the actual
recording value (first) and (if epoched) the class label for the recording (last), from most general to most specific.
Consider this example iteration over a Dataset:

dataset = Dataset(thinkers, dataset_id=10, task_id=15, return_session_id=True, return_
→˓person_id=True,

return_dataset_id=True, return_task_id=True)

for i, (x, task_id, ds_id, person_id, session_id, y) in enumerate(dataset):
awesome_stuff()

11

https://mne.tools/stable/python_reference.html
https://mne.tools/stable/generated/mne.Epochs.html#mne.Epochs
https://mne.tools/stable/generated/mne.io.Raw.html#mne.io.Raw

DN3, Release 0.0.1

12 Chapter 2. Datasets

CHAPTER

THREE

METRICS

Metrics are how your work gets evaluated. Here we talk about some of the tools DN3 provides to do this well.

• sklearn

3.1 sklearn

13

DN3, Release 0.0.1

14 Chapter 3. Metrics

CHAPTER

FOUR

TRAINABLES

Trainables cover two branches, Processes and Models. They both could consist of potentially learnable parame-
ters, but largely, Processes are the way in which Models are trained. Thus, Processes consist of a training loop,
optimizer, loss function(s), metrics,

15

DN3, Release 0.0.1

16 Chapter 4. Trainables

CHAPTER

FIVE

TRANSFORMATIONS AND PREPROCESSORS

• Summary

• Instance Transforms

• Batch Transforms

• Multiple Worker Processes Warning

• Preprocessors

5.1 Summary

One of the advantages of using PyTorch as the underlying computation library, is eager graph execution that can
leverage native python. In other words, it lets us integrate arbitrary operations in a largely parallel fashion to our
training (particularly if we are using the GPU for any neural networks).

5.2 Instance Transforms

Enter the InstanceTransform and its subclasses. When added to a Dataset, these perform operations on each
fetched recording sequence, be it a trial or cropped sequence of raw data. For the most part, they are simply callable
objects, implementing __call__() to modify a Tensor unless they modify the number/representation of channels,
sampling frequency or sequence length of the data.

They are specifically instance transforms, because they do not transform more than a single crop of data (from a single
person and dataset). This means, that these are done before a batch is aggregated for training. If the transform results
in many differently shaped tensors, a batch will not properly be created, so watch out for that!

5.3 Batch Transforms

These are the exceptions that prove the InstanceTransform rule. These transforms operate only after data has
been aggregated into a batch, and it is just about to be fed into a network for training (or otherwise). These are attached
to trainable Processess instead of Datasets.

17

https://pytorch.org/

DN3, Release 0.0.1

5.4 Multiple Worker Processes Warning

After attaching enough transforms, you may find that, even with most of the deep learning side being done on the GPU
loading the training data may become the bottleneck.

5.5 Preprocessors

Preprocessor (s) on the other hand are a method to create a transform after first encountering all of the
Recordings of a Dataset. Simply put, if the transform is known a priori, the BaseTransform interface is
sufficient. Otherwise, a Preprocessor can be used to both modify Recordings in place before training, and
create a transformation to modify sequences on-the-fly.

18 Chapter 5. Transformations and Preprocessors

CHAPTER

SIX

CONFIGURATRON

See the configuration guide for a detailed listing of configuration options.

Classes

DatasetConfig(name, config[, . . .]) Parses dataset entries in DN3 config
ExperimentConfig(config_filename[, . . .]) Parses DN3 configuration files.
RawOnTheFlyRecording(*args, **kwds)

class dn3.configuratron.config.DatasetConfig(name: str, config: dict,
adopt_auxiliaries=True,
ext_handlers=None, deep1010=None, sam-
ples=None, sfreq=None, preload=False,
return_trial_ids=False)

Parses dataset entries in DN3 config Methods

add_custom_raw_loader(custom_loader) This is used to provide a custom implementation of
taking a filename, and returning a mne.io.Raw()
instance.

add_custom_thinker_loader(thinker_loader) Add custom code to load a specific thinker from a set
of session files.

add_extension_handler(extension, handler) Provide callable code to create a raw instance from
sessions with certain file extensions.

add_progress_callbacks([session_callback,
. . .])

Add callbacks to be invoked on successful loading of
session and/or thinker.

auto_construct_dataset([mapping]) This creates a dataset using the config values.
auto_mapping([files, reset_exclusions]) Generates a mapping of sessions and people of the

dataset, assuming files are stored in the structure:
scan_toplevel() Scan the provided toplevel for all files that may be-

long to the dataset.

add_custom_raw_loader(custom_loader)
This is used to provide a custom implementation of taking a filename, and returning a mne.io.Raw()
instance. If properly constructed, all further configuratron options, such as resampling, epoching, filtering
etc. should occur automatically.

This is used to load unconventional files, e.g. ‘.mat’ files from matlab, or custom ‘.npy’ arrays, etc.

19

DN3, Release 0.0.1

Notes

Consider using mne.io.Raw.add_events() to integrate otherwise difficult (for the configuratron) to
better specify events for each recording.

Parameters custom_loader (callable) – A function that expects a single pathlib.
Path() instance as argument and returns an instance of mne.io.Raw(). To gracefully
ignore problematic sessions, raise DN3ConfigException within.

add_custom_thinker_loader(thinker_loader)
Add custom code to load a specific thinker from a set of session files.

Warning: For all intents and purposes, this circumvents most of the configuratron, and results in it
being mostly a tool for organizing dataset files. Most of the options are not leveraged and must be
implemented by the custom loader. Please open an issue if you’d like to develop this option further!

Parameters thinker_loader – A function that takes a list argument that consists of the
filenames (str) of all the detected session for the given thinker and a second argument for the
detected name of the person. The function should return a single instance of type Thinker.
To gracefully ignore the person, raise a DN3ConfigException

add_extension_handler(extension: str, handler)
Provide callable code to create a raw instance from sessions with certain file extensions. This is useful for
handling of custom file formats, while preserving a consistent experiment framework.

Parameters

• extension (str) – An extension that includes the ‘.’, e.g. ‘.csv’

• handler (callable) – Callback with signature f(path_to_file: str) -> mne.io.Raw

add_progress_callbacks(session_callback=None, thinker_callback=None)
Add callbacks to be invoked on successful loading of session and/or thinker. Optionally, these can modify
the respective loaded instances.

Parameters

• session_callback – A function that expects a single session argument and can mod-
ify the (or return an alternative) session.

• thinker_callback – The same as for session, but with Thinker instances.

auto_construct_dataset(mapping=None, **dsargs)
This creates a dataset using the config values. If tlen and tmin are specified in the config, creates epoched
dataset, otherwise Raw.

Parameters

• mapping (dict, optional) – A dict specifying a list of sessions (as paths to files)
for each person_id in the dataset. e.g. {

person_1: [sess_1.edf, . . .], person_2: [sess_1.edf], . . .

} If not specified, will use auto_mapping() to generate.

• dsargs – Any additional arguments to feed for the creation of the dataset. i.e. keyword
arguments to Dataset’s constructor (which id’s to return). If dataset_info is provided here,
it will override what was inferrable from the configuration file.

Returns dataset – An instance of Dataset, constructed according to mapping.

20 Chapter 6. Configuratron

DN3, Release 0.0.1

Return type Dataset

auto_mapping(files=None, reset_exclusions=True)
Generates a mapping of sessions and people of the dataset, assuming files are stored in the structure:
toplevel/(*optional - <version>)/<person-id>/<session-id>.{ext}

Parameters files (list) – Optional list of files (convertible to Path objects, e.g. relative or
absolute strings) to be used. If not provided, will use scan_toplevel().

Returns mapping – The keys are of all the people in the dataset, and each value another similar
mapping to that person’s sessions.

Return type dict

scan_toplevel()
Scan the provided toplevel for all files that may belong to the dataset.

Returns files – A listing of all the candidate filepaths (before excluding those that match exclu-
sion criteria).

Return type list

class dn3.configuratron.config.ExperimentConfig(config_filename: str,
adopt_auxiliaries=True)

Parses DN3 configuration files. Checking the DN3 token for listed datasets.

class dn3.configuratron.config.RawOnTheFlyRecording(*args, **kwds)
Methods

preprocess(preprocessor[, apply_transform]) Applies a preprocessor to the dataset

preprocess(preprocessor, apply_transform=True)
Applies a preprocessor to the dataset

Parameters

• preprocessor (Preprocessor) – A preprocessor to be applied

• apply_transform (bool) – Whether to apply the transform to this dataset (and all
members e.g thinkers or sessions) after preprocessing them. Alternatively, the prepro-
cessor is returned for manual application of its transform through Preprocessor.
get_transform()

Returns preprocessor – The preprocessor after application to all relevant thinkers

Return type Preprocessor

21

DN3, Release 0.0.1

22 Chapter 6. Configuratron

CHAPTER

SEVEN

DATASETS

Classes

DN3ataset(*args, **kwds)
Dataset(*args, **kwds) Collects thinkers, each of which may collect multiple

recording sessions of the same tasks, into a dataset with
DatasetInfo(dataset_name[, data_max, . . .]) This objects contains non-critical meta-data that might

need to be tracked for :py:`Dataset` objects.
EpochTorchRecording(*args, **kwds)
RawTorchRecording(*args, **kwds) Interface for bridging mne Raw instances as PyTorch

compatible “Dataset”.
Thinker(*args, **kwds) Collects multiple recordings of the same person, in-

tended to be of the same task, at different times or con-
ditions.

class dn3.data.dataset.DN3ataset(*args, **kwds)
Methods

add_transform(transform) Add a transformation that is applied to every fetched
item in the dataset

clear_transforms() Remove all added transforms from dataset.
clone() A copy of this object to allow the repetition of

recordings, thinkers, etc.
preprocess(preprocessor[, apply_transform]) Applies a preprocessor to the dataset
to_numpy([batch_size, num_workers]) Commits the dataset to numpy-formatted arrays.

Attributes

channels returns: channels – The channel sets used by the
dataset.

sequence_length returns: sequence_length – The length of each in-
stance in number of samples

sfreq returns: sampling_frequency – The sampling fre-
quencies employed by the dataset.

add_transform(transform)
Add a transformation that is applied to every fetched item in the dataset

Parameters transform (BaseTransform) – For each item retrieved by __getitem__,
transform is called to modify that item.

23

DN3, Release 0.0.1

property channels
returns: channels – The channel sets used by the dataset. :rtype: list

clear_transforms()
Remove all added transforms from dataset.

clone()
A copy of this object to allow the repetition of recordings, thinkers, etc. that load data from the same
memory/files but have their own tracking of ids.

Returns cloned – New copy of this object.

Return type DN3ataset

preprocess(preprocessor: dn3.transforms.preprocessors.Preprocessor, apply_transform=True)
Applies a preprocessor to the dataset

Parameters

• preprocessor (Preprocessor) – A preprocessor to be applied

• apply_transform (bool) – Whether to apply the transform to this dataset (and all
members e.g thinkers or sessions) after preprocessing them. Alternatively, the prepro-
cessor is returned for manual application of its transform through Preprocessor.
get_transform()

Returns preprocessor – The preprocessor after application to all relevant thinkers

Return type Preprocessor

property sequence_length
returns: sequence_length – The length of each instance in number of samples :rtype: int, list

property sfreq
returns: sampling_frequency – The sampling frequencies employed by the dataset. :rtype: float, list

to_numpy(batch_size=64, batch_transforms: list = None, num_workers=4, **dataloader_kwargs)
Commits the dataset to numpy-formatted arrays. Useful for saving dataset to disk, or preparing for tools
that expect numpy-formatted data rather than iteratable.

Notes

A pytorch DataLoader is used to fetch the data to conveniently leverage multiprocessing, and naturally

Parameters

• batch_size (int) – The number of items to fetch per worker. This probably doesn’t
need much tuning.

• num_workers (int) – The number of spawned processes to fetch and transform data.

• batch_transforms (list) – These are potential batch-level transforms that

• dataloader_kwargs (dict) – Keyword arguments for the pytorch DataLoader
that underpins the fetched data

Returns data – A list of numpy arrays.

Return type list

class dn3.data.dataset.Dataset(*args, **kwds)
Collects thinkers, each of which may collect multiple recording sessions of the same tasks, into a dataset with
(largely) consistent:

24 Chapter 7. Datasets

DN3, Release 0.0.1

Methods

add_transform(transform[, thinkers]) Add a transformation that is applied to every fetched
item in the dataset

clear_transforms() Remove all added transforms from dataset.
dump_dataset(toplevel[, apply_transforms]) Dumps the dataset to the file location specified by

toplevel, with a single file per session made of all the
return tensors (as numpy data) loaded by the dataset.

get_sessions() Accumulates all the sessions from each thinker in the
dataset in a nested dictionary.

get_targets() Collect all the targets (i.e.
get_thinkers() Accumulates a consistently ordered list of all the

thinkers in the dataset.
lmso([folds, test_splits, validation_splits]) This generates a “Leave-multiple-subject-out”

(LMSO) split.
loso([validation_person_id, test_person_id]) This generates a “Leave-one-subject-out” (LOSO)

split.
preprocess(preprocessor[, apply_transform,
. . .])

Applies a preprocessor to the dataset

safe_mode([mode]) This allows switching safe_mode on or off.
update_id_returns([trial, session, person,
. . .])

Updates which ids are to be returned by the dataset.

Attributes

channels returns: channels – The channel sets used by the
dataset.

sequence_length returns: sequence_length – The length of each in-
stance in number of samples

sfreq returns: sampling_frequency – The sampling fre-
quencies employed by the dataset.

• hardware: - channel number/labels - sampling frequency

• annotation paradigm: - consistent event types

add_transform(transform, thinkers=None)
Add a transformation that is applied to every fetched item in the dataset

Parameters transform (BaseTransform) – For each item retrieved by __getitem__,
transform is called to modify that item.

property channels
returns: channels – The channel sets used by the dataset. :rtype: list

clear_transforms()
Remove all added transforms from dataset.

dump_dataset(toplevel, apply_transforms=True)
Dumps the dataset to the file location specified by toplevel, with a single file per session made of all the
return tensors (as numpy data) loaded by the dataset.

Parameters

• toplevel (str) – The toplevel location to dump the dataset to. This folder (and path)
will be created if it does not exist. Each person will have a subdirectory therein, with

25

DN3, Release 0.0.1

numpy-formatted files for each session within that.

• apply_transforms (bool) – Whether to apply the transforms while preparing the
data to be saved.

get_sessions()
Accumulates all the sessions from each thinker in the dataset in a nested dictionary.

Returns session_dict – Keys are the thinkers of get_thinkers(), values are each another
dictionary that maps session ids to _Recording

Return type dict

get_targets()
Collect all the targets (i.e. labels) that this Thinker’s data is annotated with.

Returns targets – A numpy-formatted array of all the targets/label for this thinker.

Return type np.ndarray

get_thinkers()
Accumulates a consistently ordered list of all the thinkers in the dataset. It is this order that any automatic
segmenting through loso() and lmso() will be done.

Returns thinker_names

Return type list

lmso(folds=10, test_splits=None, validation_splits=None)
This generates a “Leave-multiple-subject-out” (LMSO) split. In other words X-fold cross-validation, with
boundaries enforced at thinkers (each person’s data is not split into different folds).

Parameters

• folds (int) – If this is specified and splits is None, will split the subjects into this many
folds, and then use each fold as a test set in turn (and the previous fold - starting with the
last - as validation).

• test_splits (list, tuple) –

This should be a list of tuples/lists of either:

– The ids of the consistent test set. In which case, folds must be specified, or valida-
tion_splits is a nested list that .

– Two sub lists, first testing, second validation ids

Yields

• training (Dataset) – Another dataset that represents the training set

• validation (Dataset) – The validation people as a dataset

• test (Thinker) – The test people as a dataset

loso(validation_person_id=None, test_person_id=None)
This generates a “Leave-one-subject-out” (LOSO) split. Tests each person one-by-one, and validates on
the previous (the first is validated with the last).

Parameters

• validation_person_id ((int, str, list, optional)) – If speci-
fied, and corresponds to one of the person_ids in this dataset, the loso cross validation
will consistently generate this thinker as validation. If list, must be the same length as
test_person_id, say a length N. If so, will yield N each in sequence, and use remainder
for test.

26 Chapter 7. Datasets

DN3, Release 0.0.1

• test_person_id ((int, str, list, optional)) – Same as valida-
tion_person_id, but for testing. However, testing may be a list when validation is
a single value. Thus if testing is N ids, will yield N values, with a consistent single
validation person. If a single id (int or str), and validation_person_id is not also a
single id, will ignore validation_person_id and loop through all others that are not the
test_person_id.

Yields

• training (Dataset) – Another dataset that represents the training set

• validation (Thinker) – The validation thinker

• test (Thinker) – The test thinker

preprocess(preprocessor: dn3.transforms.preprocessors.Preprocessor, apply_transform=True,
thinkers=None)

Applies a preprocessor to the dataset

Parameters

• preprocessor (Preprocessor) – A preprocessor to be applied

• thinkers ((None, Iterable)) – If specified (default is None), the thinkers to
use for preprocessing calculation

• apply_transform (bool) – Whether to apply the transform to this dataset (all
thinkers, not just those specified for preprocessing) after preprocessing them. Exclu-
sive application to specific thinkers can be done using the return value and a separate
call to add_transform with the same thinkers list.

Returns preprocessor – The preprocessor after application to all relevant thinkers

Return type Preprocessor

safe_mode(mode=True)
This allows switching safe_mode on or off. When safe_mode is on, if data is ever NaN, it is captured
before being returned and a report is generated.

Parameters mode (bool) – The status of whether in safe mode or not.

property sequence_length
returns: sequence_length – The length of each instance in number of samples :rtype: int, list

property sfreq
returns: sampling_frequency – The sampling frequencies employed by the dataset. :rtype: float, list

update_id_returns(trial=None, session=None, person=None, task=None, dataset=None)
Updates which ids are to be returned by the dataset. If any argument is None it preserves the previous
value.

Parameters

• trial (None, bool) – Whether to return trial ids.

• session (None, bool) – Whether to return session ids.

• person (None, bool) – Whether to return person ids.

• task (None, bool) – Whether to return task ids.

• dataset (None, bool) – Whether to return dataset ids.

27

DN3, Release 0.0.1

class dn3.data.dataset.DatasetInfo(dataset_name, data_max=None, data_min=None, ex-
cluded_people=None, targets=None)

This objects contains non-critical meta-data that might need to be tracked for :py:`Dataset` objects. Gener-
ally not necessary to be constructed manually, these are created by the configuratron to automatically create
transforms and/or other processes downstream.

class dn3.data.dataset.EpochTorchRecording(*args, **kwds)
Methods

event_mapping() Maps the labels returned by this to the events as
recorded in the original annotations or stim channel.

preprocess(preprocessor[, apply_transform]) Applies a preprocessor to the dataset

event_mapping()
Maps the labels returned by this to the events as recorded in the original annotations or stim channel.

Returns mapping – Keys are the class labels used by this object, values are the original event
signifier.

Return type dict

preprocess(preprocessor: dn3.transforms.preprocessors.Preprocessor, apply_transform=True)
Applies a preprocessor to the dataset

Parameters

• preprocessor (Preprocessor) – A preprocessor to be applied

• apply_transform (bool) – Whether to apply the transform to this dataset
(and all members e.g thinkers or sessions) after preprocessing them. Alterna-
tively, the preprocessor is returned for manual application of its transform through
Preprocessor.get_transform()

Returns preprocessor – The preprocessor after application to all relevant thinkers

Return type Preprocessor

class dn3.data.dataset.RawTorchRecording(*args, **kwds)
Interface for bridging mne Raw instances as PyTorch compatible “Dataset”.

Parameters

• raw (mne.io.Raw) – Raw data, data does not need to be preloaded.

• tlen (float) – Length of recording specified in seconds.

• session_id ((int, str, optional)) – A unique (with respect to a thinker
within an eventual dataset) identifier for the current recording session. If not specified,
defaults to ‘0’.

• person_id ((int, str, optional)) – A unique (with respect to an eventual
dataset) identifier for the particular person being recorded.

• stride (int) – The number of samples to skip between each starting offset of loaded
samples.

Methods

preprocess(preprocessor[, apply_transform]) Applies a preprocessor to the dataset

preprocess(preprocessor: dn3.transforms.preprocessors.Preprocessor, apply_transform=True)

28 Chapter 7. Datasets

DN3, Release 0.0.1

Applies a preprocessor to the dataset

Parameters

• preprocessor (Preprocessor) – A preprocessor to be applied

• apply_transform (bool) – Whether to apply the transform to this dataset
(and all members e.g thinkers or sessions) after preprocessing them. Alterna-
tively, the preprocessor is returned for manual application of its transform through
Preprocessor.get_transform()

Returns preprocessor – The preprocessor after application to all relevant thinkers

Return type Preprocessor

class dn3.data.dataset.Thinker(*args, **kwds)
Collects multiple recordings of the same person, intended to be of the same task, at different times or conditions.
Methods

add_transform(transform) Add a transformation that is applied to every fetched
item in the dataset

clear_transforms([deep_clear]) Remove all added transforms from dataset.
get_targets() Collect all the targets (i.e.
preprocess(preprocessor[, apply_transform,
. . .])

Applies a preprocessor to the dataset

split([training_sess_ids, . . .]) Split the thinker’s data into training, validation and
testing sets.

Attributes

channels returns: channels – The channel sets used by the
dataset.

sequence_length returns: sequence_length – The length of each in-
stance in number of samples

sfreq returns: sampling_frequency – The sampling fre-
quencies employed by the dataset.

add_transform(transform)
Add a transformation that is applied to every fetched item in the dataset

Parameters transform (BaseTransform) – For each item retrieved by __getitem__,
transform is called to modify that item.

property channels
returns: channels – The channel sets used by the dataset. :rtype: list

clear_transforms(deep_clear=False)
Remove all added transforms from dataset.

get_targets()
Collect all the targets (i.e. labels) that this Thinker’s data is annotated with.

Returns targets – A numpy-formatted array of all the targets/label for this thinker.

Return type np.ndarray

preprocess(preprocessor: dn3.transforms.preprocessors.Preprocessor, apply_transform=True, ses-
sions=None)

Applies a preprocessor to the dataset

29

DN3, Release 0.0.1

Parameters

• preprocessor (Preprocessor) – A preprocessor to be applied

• sessions ((None, Iterable)) – If specified (default is None), the sessions to
use for preprocessing calculation

• apply_transform (bool) – Whether to apply the transform to this dataset (all
sessions, not just those specified for preprocessing) after preprocessing them. Exclu-
sive application to select sessions can be done using the return value and a separate
call to add_transform with the same sessions list.

Returns preprocessor – The preprocessor after application to all relevant thinkers

Return type Preprocessor

property sequence_length
returns: sequence_length – The length of each instance in number of samples :rtype: int, list

property sfreq
returns: sampling_frequency – The sampling frequencies employed by the dataset. :rtype: float, list

split(training_sess_ids=None, validation_sess_ids=None, testing_sess_ids=None, test_frac=0.25,
validation_frac=0.25)

Split the thinker’s data into training, validation and testing sets.

Parameters

• test_frac (float) – Proportion of the total data to use for testing, this is over-
ridden by testing_sess_ids.

• validation_frac (float) – Proportion of the data remaining - after removing
test proportion/sessions - to use as validation data. Likewise, validation_sess_ids
overrides this value.

• training_sess_ids (: (Iterable, None)) – The session ids to be ex-
plicitly used for training.

• validation_sess_ids ((Iterable, None)) – The session ids to be explic-
itly used for validation.

• testing_sess_ids ((Iterable, None)) – The session ids to be explicitly
used for testing.

Returns

• training (DN3ataset) – The training dataset

• validation (DN3ataset) – The validation dataset

• testing (DN3ataset) – The testing dataset

30 Chapter 7. Datasets

CHAPTER

EIGHT

NEURAL NETWORK BUILDING BLOCKS

DN3 provides a variety of ready-made networks and building blocks (any PyTorch modules would suffice) to be
trained.

8.1 Models

Classes

Classifier(targets, samples, channels[, . . .]) A generic Classifer container.
DN3BaseModel(samples, channels[, . . .]) This is a base model used by the provided models in

the library that is meant to make those included in this
library as powerful and multi-purpose as is reasonable.

EEGNet(targets, samples, channels[, do, . . .]) This is the DN3 re-implementation of Lawhern et.
EEGNetStrided(targets, samples, channels[, . . .]) This is the DN3 re-implementation of Lawhern et.
LogRegNetwork(targets, samples, channels[, . . .]) In effect, simply an implementation of linear kernel

(multi)logistic regression
StrideClassifier(targets, samples, channels)
TIDNet(targets, samples, channels[, . . .]) The Thinker Invariant Densenet from Kostas & Rudzicz

2020, https://doi.org/10.1088/1741-2552/abb7a7

class dn3.trainable.models.Classifier(targets, samples, channels, return_features=True)
A generic Classifer container. This container breaks operations up into feature extraction and feature classifica-
tion to enable convenience in transfer learning and more. Methods

forward(*x) Defines the computation performed at every call.
freeze_features([unfreeze, freeze_classifier]) In many cases, the features learned by a model in one

domain can be applied to another case.
from_dataset(dataset, **modelargs) Create a classifier from a dataset.
make_new_classification_layer() This allows for a distinction between the classifica-

tion layer(s) and the rest of the network.

forward(*x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks

31

https://doi.org/10.1088/1741-2552/abb7a7

DN3, Release 0.0.1

while the latter silently ignores them.

freeze_features(unfreeze=False, freeze_classifier=False)
In many cases, the features learned by a model in one domain can be applied to another case.

This method freezes (or un-freezes) all but the classifier layer. So that any further training does not (or
does if unfreeze=True) affect these weights.

Parameters

• unfreeze (bool) – To unfreeze weights after a previous call to this.

• freeze_classifier (bool) – Commonly, the classifier layer will not be frozen
(default). Setting this to True will freeze this layer too.

classmethod from_dataset(dataset: dn3.data.dataset.DN3ataset, **modelargs)
Create a classifier from a dataset.

Parameters

• dataset –

• modelargs (dict) – Options to construct the dataset, if dataset does not have listed
targets, targets must be specified in the keyword arguments or will fall back to 2.

Returns model – A new Classifier ready to classifiy data from dataset

Return type Classifier

make_new_classification_layer()
This allows for a distinction between the classification layer(s) and the rest of the network. Using a basic
formulation of a network being composed of two parts feature_extractor & classifier.

This method is for implementing the classification side, so that methods like freeze_features()
works as intended.

Anything besides a layer that just flattens anything incoming to a vector and Linearly weights this to the
target should override this method, and there should be a variable called self.classifier

class dn3.trainable.models.DN3BaseModel(samples, channels, return_features=True)
This is a base model used by the provided models in the library that is meant to make those included in this
library as powerful and multi-purpose as is reasonable.

It is not strictly necessary to have new modules inherit from this, any nn.Module should suffice, but it provides
some integrated conveniences. . .

The premise of this model is that deep learning models can be understood as learned pipelines. These
DN3BaseModel objects, are re-interpreted as a two-stage pipeline, the two stages being feature extraction
and classification. Methods

clone() This provides a standard way to copy models,
weights and all.

forward(x) Defines the computation performed at every call.

clone()
This provides a standard way to copy models, weights and all.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

32 Chapter 8. Neural Network Building Blocks

DN3, Release 0.0.1

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.models.EEGNet(targets, samples, channels, do=0.25, pooling=8, F1=8,
D=2, t_len=65, F2=16, return_features=False)

This is the DN3 re-implementation of Lawhern et. al.’s EEGNet from: https://iopscience.iop.org/article/10.
1088/1741-2552/aace8c

Notes

The implementation below is in no way officially sanctioned by the original authors, and in fact is missing the
constraints the original authors have on the convolution kernels, and may or may not be missing more. . .

That being said, in our own personal experience, this implementation has fared no worse when compared to
implementations that include this constraint (albeit, those were also not written by the original authors).

class dn3.trainable.models.EEGNetStrided(targets, samples, channels, do=0.25, pool-
ing=8, F1=8, D=2, t_len=65, F2=16, re-
turn_features=False, stride_width=2)

This is the DN3 re-implementation of Lawhern et. al.’s EEGNet from: https://iopscience.iop.org/article/10.
1088/1741-2552/aace8c

Notes

The implementation below is in no way officially sanctioned by the original authors, and in fact is missing the
constraints the original authors have on the convolution kernels, and may or may not be missing more. . .

That being said, in our own personal experience, this implementation has fared no worse when compared to
implementations that include this constraint (albeit, those were also not written by the original authors).

class dn3.trainable.models.LogRegNetwork(targets, samples, channels, re-
turn_features=True)

In effect, simply an implementation of linear kernel (multi)logistic regression

class dn3.trainable.models.StrideClassifier(targets, samples, channels, stride_width=2,
return_features=False)

Methods

make_new_classification_layer() This allows for a distinction between the classifica-
tion layer(s) and the rest of the network.

make_new_classification_layer()
This allows for a distinction between the classification layer(s) and the rest of the network. Using a basic
formulation of a network being composed of two parts feature_extractor & classifier.

This method is for implementing the classification side, so that methods like freeze_features()
works as intended.

Anything besides a layer that just flattens anything incoming to a vector and Linearly weights this to the
target should override this method, and there should be a variable called self.classifier

8.1. Models 33

https://iopscience.iop.org/article/10.1088/1741-2552/aace8c
https://iopscience.iop.org/article/10.1088/1741-2552/aace8c
https://iopscience.iop.org/article/10.1088/1741-2552/aace8c
https://iopscience.iop.org/article/10.1088/1741-2552/aace8c

DN3, Release 0.0.1

class dn3.trainable.models.TIDNet(targets, samples, channels, s_growth=24,
t_filters=32, do=0.4, pooling=20, activation=<class
'torch.nn.modules.activation.LeakyReLU'>, temp_layers=2,
spat_layers=2, temp_span=0.05, bottleneck=3, summary=-
1, return_features=False)

The Thinker Invariant Densenet from Kostas & Rudzicz 2020, https://doi.org/10.1088/1741-2552/abb7a7

This alone is not strictly “thinker invariant”, but on average outperforms shallower models at inter-subject pre-
diction capability.

8.2 Layers

Classes

Concatenate([axis])
ConvBlock2D(in_filters, out_filters, kernel) Implements complete convolution block with order:
DenseFilter(in_features, growth_rate[, . . .])
DenseSpatialFilter(channels, growth, depth)
Expand([axis])
Flatten()
IndexSelect(indices)
Permute(axes)
SpatialFilter(channels, filters, depth[, . . .])
Squeeze([axis])
TemporalFilter(channels, filters, depth, . . .)

class dn3.trainable.layers.Concatenate(axis=- 1)
Methods

forward(*x) Defines the computation performed at every call.

forward(*x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.ConvBlock2D(in_filters, out_filters, kernel, stride=(1,
1), padding=0, dilation=1, groups=1,
do_rate=0.5, batch_norm=True, activation=<class
'torch.nn.modules.activation.LeakyReLU'>, resid-
ual=False)

Implements complete convolution block with order:

• Convolution

• dropout (spatial)

• activation

34 Chapter 8. Neural Network Building Blocks

https://doi.org/10.1088/1741-2552/abb7a7

DN3, Release 0.0.1

• batch-norm

• (optional) residual reconnection

Methods

forward(input, **kwargs) Defines the computation performed at every call.

forward(input, **kwargs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.DenseFilter(in_features, growth_rate, filter_len=5,
do=0.5, bottleneck=2, activation=<class
'torch.nn.modules.activation.LeakyReLU'>, dim=-
2)

Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.DenseSpatialFilter(channels, growth, depth,
in_ch=1, bottleneck=4,
dropout_rate=0.0, activation=<class
'torch.nn.modules.activation.LeakyReLU'>,
collapse=True)

Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

8.2. Layers 35

DN3, Release 0.0.1

class dn3.trainable.layers.Expand(axis=- 1)
Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.Flatten
Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.IndexSelect(indices)
Methods

forward(*x) Defines the computation performed at every call.

forward(*x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.Permute(axes)
Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

36 Chapter 8. Neural Network Building Blocks

DN3, Release 0.0.1

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.SpatialFilter(channels, filters, depth, in_ch=1,
dropout_rate=0.0, activation=<class
'torch.nn.modules.activation.LeakyReLU'>,
batch_norm=True, residual=False)

Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.Squeeze(axis=- 1)
Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.layers.TemporalFilter(channels, filters, depth, temp_len,
dropout=0.0, activation=<class
'torch.nn.modules.activation.LeakyReLU'>,
residual='netwise')

Methods

forward(x) Defines the computation performed at every call.

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks

8.2. Layers 37

DN3, Release 0.0.1

while the latter silently ignores them.

38 Chapter 8. Neural Network Building Blocks

CHAPTER

NINE

PROCESSES

Processes describe how a (or several) neural networks (trainables) are trained with given data. In a large number
of cases, simply leveraging StandardClassification will be sufficient for many cases, as it provides many
idiosynchratic options, as listed below.

See the processes guide for an overview on how these work.

Classes

BaseProcess([lr, metrics, . . .]) Initialization of the Base Trainable object.
LDAMLoss(cls_num_list[, max_m, weight, s])
StandardClassification(classifier[, . . .])

Functions

get_label_balance(dataset) Given a dataset, return the proportion of each target
class and the counts of each class type

class dn3.trainable.processes.BaseProcess(lr=0.001, metrics=None, eval-
uation_only_metrics=None,
l2_weight_decay=0.01, cuda=None,
**kwargs)

Initialization of the Base Trainable object. Any learning procedure that leverages DN3atasets should subclass
this base class.

By default uses the SGD with momentum optimization. Methods

build_network(**kwargs) This method is used to add trainable modules to the
process.

calculate_loss(inputs, outputs) Given the inputs to and outputs from underlying
modules, calculate the loss.

calculate_metrics(inputs, outputs) Given the inputs to and outputs from the underlying
module.

evaluate(dataset, **loader_kwargs) Calculate and return metrics for a dataset
fit(training_dataset[, epochs, . . .]) sklearn/keras-like convenience method to simply

proceed with training across multiple epochs of the
provided

forward(*inputs) Given a batch of inputs, return the outputs produced
by the trainable module.

load_best(best) Load the parameters as saved by save_best().
parameters() All the trainable parameters in the Trainable.

continues on next page

39

DN3, Release 0.0.1

Table 3 – continued from previous page
predict(dataset, **loader_kwargs) Determine the outputs for all loaded data from the

dataset
save_best() Create a snapshot of what is being currently trained

for re-laoding with the load_best() method.
set_scheduler(scheduler[, step_every_batch]) This allow the addition of a learning rate schedule to

the process.

build_network(**kwargs)
This method is used to add trainable modules to the process. Rather than placing objects for training in
the __init__ method, they should be placed here.

By default any arguments that propagate unused from __init__ are included here.

calculate_loss(inputs, outputs)
Given the inputs to and outputs from underlying modules, calculate the loss.

Returns Single loss quantity to be minimized.

Return type Loss

calculate_metrics(inputs, outputs)
Given the inputs to and outputs from the underlying module. Return tracked metrics.

Parameters

• inputs – Input tensors.

• outputs – Output tensors.

Returns metrics – Dictionary of metric quantities.

Return type OrderedDict, None

evaluate(dataset, **loader_kwargs)
Calculate and return metrics for a dataset

Parameters

• dataset (DN3ataset, DataLoader) – The dataset that will be used for eval-
uation, if not a DataLoader, one will be constructed

• loader_kwargs (dict) – Args that will be passed to the dataloader, but shuffle
and drop_last will be both be forced to False

Returns metrics – Metric scores for the entire

Return type OrderedDict

fit(training_dataset, epochs=1, validation_dataset=None, step_callback=None, re-
sume_epoch=None, resume_iteration=None, log_callback=None, epoch_callback=None,
batch_size=8, warmup_frac=0.2, retain_best='loss', validation_interval=None,
train_log_interval=None, **loader_kwargs)
sklearn/keras-like convenience method to simply proceed with training across multiple epochs of the
provided dataset

Parameters

• training_dataset (DN3ataset, DataLoader) –

• validation_dataset (DN3ataset, DataLoader) –

• epochs (int) – Total number of epochs to fit

40 Chapter 9. Processes

DN3, Release 0.0.1

• resume_epoch (int) – The starting epoch to train from. This will likely only be
used to resume training at a certain point.

• resume_iteration (int) – Similar to start epoch but specified in batches. This
can either be used alone, or in conjunction with start_epoch. If used alone, the start
epoch is the floor of start_iteration divided by batches per epoch. In other words this
specifies cumulative batches if start_epoch is not specified, and relative to the current
epoch otherwise.

• step_callback (callable) – Function to run after every training step that has
signature: fn(train_metrics) -> None

• log_callback (callable) – Function to run after every log interval that has
signature: fn(train_metrics) -> None

• epoch_callback (callable) – Function to run after every epoch that has sig-
nature: fn(validation_metrics) -> None

• batch_size (int) – The batch_size to be used for the training and validation
datasets. This is ignored if they are provided as DataLoader.

• warmup_frac (float) – The fraction of iterations that will be spent increasing
the learning rate under the default 1cycle policy (with cosine annealing). Value will
be automatically clamped values between [0, 0.5]

• retain_best ((str, None)) – If `validation_dataset` is provided, which
model weights to retain. If ‘loss’ (default), will retain the model at the epoch with
the lowest validation loss. If another string, will assume that is the metric to monitor
for the highest score. If None, the final model is used.

• validation_interval (int, None) – The number of batches between check-
ing the validation dataset

• train_log_interval (int, None) – The number of batches between persis-
tent logging of training metrics, if None (default) happens at the end of every epoch.

• loader_kwargs – Any remaining keyword arguments will be passed as such to
any DataLoaders that are automatically constructed. If both training and validation
datasets are provided as DataLoaders, this will be ignored.

Notes

If the datasets above are provided as DN3atasets, automatic optimizations are performed to speed up
loading. These include setting the number of workers = to the number of CPUs/system threads - 1, and
pinning memory for rapid CUDA transfer if leveraging the GPU. Unless you are very comfortable with
PyTorch, it’s probably better to not provide your own DataLoader, and let this be done automatically.

Returns

• train_log (Dataframe) – Metrics after each iteration of training as a pandas dataframe

• validation_log (Dataframe) – Validation metrics after each epoch of training as a
pandas dataframe

forward(*inputs)
Given a batch of inputs, return the outputs produced by the trainable module.

Parameters inputs – Tensors needed for underlying module.

Returns Outputs of module

Return type outputs

41

DN3, Release 0.0.1

load_best(best)
Load the parameters as saved by save_best().

Parameters best (Any) –

parameters()
All the trainable parameters in the Trainable. This includes any architecture parameters and meta-
parameters.

Returns An iterator of parameters

Return type params

predict(dataset, **loader_kwargs)
Determine the outputs for all loaded data from the dataset

Parameters

• dataset (DN3ataset, DataLoader) – The dataset that will be used for eval-
uation, if not a DataLoader, one will be constructed

• loader_kwargs (dict) – Args that will be passed to the dataloader, but shuffle
and drop_last will be both be forced to False

Returns

• inputs (Tensor) – The exact inputs used to calculate the outputs (in case they were
stochastic and need saving)

• outputs (Tensor) – The outputs from each run of :function:`forward`

save_best()
Create a snapshot of what is being currently trained for re-laoding with the load_best() method.

Returns best – Whatever format is needed for load_best(), will be the argument provided
to it.

Return type Any

set_scheduler(scheduler, step_every_batch=False)
This allow the addition of a learning rate schedule to the process. By default, a linear warmup with cosine
decay will be used. Any scheduler that is an instance of Scheduler (pytorch’s schedulers, or extensions
thereof) can be set here. Additionally, a string keywords can be used including:

• “constant”

Parameters

• scheduler (str, Scheduler) –

• step_every_batch (bool) – Whether to call step after every batch (if True), or
after every epoch (False)

class dn3.trainable.processes.LDAMLoss(cls_num_list, max_m=0.5, weight=None, s=30)
Methods

forward(x, target) Defines the computation performed at every call.

forward(x, target)
Defines the computation performed at every call.

Should be overridden by all subclasses.

42 Chapter 9. Processes

DN3, Release 0.0.1

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class dn3.trainable.processes.StandardClassification(classifier:
torch.nn.modules.module.Module,
loss_fn=None, cuda=None,
metrics=None, learn-
ing_rate=0.01, la-
bel_smoothing=None,
**kwargs)

Methods

calculate_loss(inputs, outputs) Given the inputs to and outputs from underlying
modules, calculate the loss.

fit(training_dataset[, epochs, . . .]) sklearn/keras-like convenience method to simply
proceed with training across multiple epochs of the
provided

forward(*inputs) Given a batch of inputs, return the outputs produced
by the trainable module.

calculate_loss(inputs, outputs)
Given the inputs to and outputs from underlying modules, calculate the loss.

Returns Single loss quantity to be minimized.

Return type Loss

fit(training_dataset, epochs=1, validation_dataset=None, step_callback=None,
epoch_callback=None, batch_size=8, warmup_frac=0.2, retain_best='loss', bal-
ance_method=None, **loader_kwargs)
sklearn/keras-like convenience method to simply proceed with training across multiple epochs of the
provided dataset

Parameters

• training_dataset (DN3ataset, DataLoader) –

• validation_dataset (DN3ataset, DataLoader) –

• epochs (int) –

• step_callback (callable) – Function to run after every training step that has
signature: fn(train_metrics) -> None

• epoch_callback (callable) – Function to run after every epoch that has sig-
nature: fn(validation_metrics) -> None

• batch_size (int) – The batch_size to be used for the training and validation
datasets. This is ignored if they are provided as DataLoader.

• warmup_frac (float) – The fraction of iterations that will be spent increasing
the learning rate under the default 1cycle policy (with cosine annealing). Value will
be automatically clamped values between [0, 0.5]

• retain_best ((str, None)) – If `validation_dataset` is provided, which
model weights to retain. If ‘loss’ (default), will retain the model at the epoch with

43

DN3, Release 0.0.1

the lowest validation loss. If another string, will assume that is the metric to monitor
for the highest score. If None, the final model is used.

• balance_method ((None, str)) – If and how to balance training samples
when training. None (default) will simply randomly sample all training samples
equally. ‘undersample’ will sample each class N_min times where N_min is equal
to the number of examples in the minority class. ‘oversample’ will sample each class
N_max times, where N_max is the number of the majority class.

• loader_kwargs – Any remaining keyword arguments will be passed as such to
any DataLoaders that are automatically constructed. If both training and validation
datasets are provided as DataLoaders, this will be ignored.

Notes

If the datasets above are provided as DN3atasets, automatic optimizations are performed to speed up
loading. These include setting the number of workers = to the number of CPUs/system threads - 1, and
pinning memory for rapid CUDA transfer if leveraging the GPU. Unless you are very comfortable with
PyTorch, it’s probably better to not provide your own DataLoader, and let this be done automatically.

Returns

• train_log (Dataframe) – Metrics after each iteration of training as a pandas dataframe

• validation_log (Dataframe) – Validation metrics after each epoch of training as a
pandas dataframe

forward(*inputs)
Given a batch of inputs, return the outputs produced by the trainable module.

Parameters inputs – Tensors needed for underlying module.

Returns Outputs of module

Return type outputs

dn3.trainable.processes.get_label_balance(dataset)
Given a dataset, return the proportion of each target class and the counts of each class type

Parameters dataset –

Returns

Return type sample_weights, counts

44 Chapter 9. Processes

CHAPTER

TEN

TRANSFORMS

• Instance Transforms

• Batch Transforms

• Preprocessors

10.1 Instance Transforms

Classes

FixedScale([low_bound, high_bound]) Scale the input to range from low to high
MappingDeep1010(dataset[, add_scale_ind, . . .]) Maps various channel sets into the Deep10-10 scheme,

and normalizes data between [-1, 1] with an additional
scaling parameter to describe the relative scale of a trial
with respect to the entire dataset.

NoisyBlankDeep1010([mask_index,
purge_mask])
ZScore([only_trial_data]) Z-score normalization of trials

Functions

same_channel_sets(channel_sets) Validate that all the channel sets are consistent, return
false if not

class dn3.transforms.instance.FixedScale(low_bound=- 1, high_bound=1)
Scale the input to range from low to high

class dn3.transforms.instance.MappingDeep1010(dataset, add_scale_ind=True, re-
turn_mask=False)

Maps various channel sets into the Deep10-10 scheme, and normalizes data between [-1, 1] with an additional
scaling parameter to describe the relative scale of a trial with respect to the entire dataset.

TODO - refer to eventual literature on this Methods

45

DN3, Release 0.0.1

new_channels(old_channels) This is an optional method that indicates the transfor-
mation modifies the representation and/or presence
of channels.

new_channels(old_channels: numpy.ndarray)
This is an optional method that indicates the transformation modifies the representation and/or presence
of channels.

Parameters old_channels (ndarray) – An array whose last two dimensions are chan-
nel names and channel types.

Returns new_channels – An array with the channel names and types after this transformation.
Supports the addition of dimensions e.g. a list of channels into a rectangular grid, but the
final two dimensions must remain the channel names, and types respectively.

Return type ndarray

class dn3.transforms.instance.NoisyBlankDeep1010(mask_index=1, purge_mask=False)

class dn3.transforms.instance.ZScore(only_trial_data=True)
Z-score normalization of trials

dn3.transforms.instance.same_channel_sets(channel_sets: list)
Validate that all the channel sets are consistent, return false if not

10.2 Batch Transforms

10.3 Preprocessors

Classes

Preprocessor() Base class for various preprocessing actions.

class dn3.transforms.preprocessors.Preprocessor
Base class for various preprocessing actions. Sub-classes are called with a subclass of _Recording and operate
on these instances in-place.

Any modifications to data specifically should be implemented through a subclass of BaseTransform, and
returned by the method get_transform() Methods

get_transform() Generate and return any transform associated with
this preprocessor.

get_transform()
Generate and return any transform associated with this preprocessor. Should be used after applying this
to a dataset, i.e. through DN3ataset.preprocess()

Returns transform

Return type BaseTransform

46 Chapter 10. Transforms

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

47

DN3, Release 0.0.1

48 Chapter 11. Indices and tables

PYTHON MODULE INDEX

d
dn3.configuratron.config, 19
dn3.data.dataset, 23
dn3.trainable.layers, 34
dn3.trainable.models, 31
dn3.trainable.processes, 39
dn3.transforms.batch, 46
dn3.transforms.instance, 45
dn3.transforms.preprocessors, 46

49

DN3, Release 0.0.1

50 Python Module Index

INDEX

A
add_custom_raw_loader()

(dn3.configuratron.config.DatasetConfig
method), 19

add_custom_thinker_loader()
(dn3.configuratron.config.DatasetConfig
method), 20

add_extension_handler()
(dn3.configuratron.config.DatasetConfig
method), 20

add_progress_callbacks()
(dn3.configuratron.config.DatasetConfig
method), 20

add_transform() (dn3.data.dataset.Dataset
method), 25

add_transform() (dn3.data.dataset.DN3ataset
method), 23

add_transform() (dn3.data.dataset.Thinker
method), 29

auto_construct_dataset()
(dn3.configuratron.config.DatasetConfig
method), 20

auto_mapping() (dn3.configuratron.config.DatasetConfig
method), 21

B
BaseProcess (class in dn3.trainable.processes), 39
build_network() (dn3.trainable.processes.BaseProcess

method), 39

C
calculate_loss() (dn3.trainable.processes.BaseProcess

method), 40
calculate_loss() (dn3.trainable.processes.StandardClassification

method), 43
calculate_metrics()

(dn3.trainable.processes.BaseProcess method),
40

channels() (dn3.data.dataset.Dataset property), 25
channels() (dn3.data.dataset.DN3ataset property),

23
channels() (dn3.data.dataset.Thinker property), 29

Classifier (class in dn3.trainable.models), 31
clear_transforms() (dn3.data.dataset.Dataset

method), 25
clear_transforms() (dn3.data.dataset.DN3ataset

method), 24
clear_transforms() (dn3.data.dataset.Thinker

method), 29
clone() (dn3.data.dataset.DN3ataset method), 24
clone() (dn3.trainable.models.DN3BaseModel

method), 32
Concatenate (class in dn3.trainable.layers), 34
ConvBlock2D (class in dn3.trainable.layers), 34

D
Dataset (class in dn3.data.dataset), 24
DatasetConfig (class in dn3.configuratron.config),

19
DatasetInfo (class in dn3.data.dataset), 27
DenseFilter (class in dn3.trainable.layers), 35
DenseSpatialFilter (class in

dn3.trainable.layers), 35
dn3.configuratron.config

module, 19
dn3.data.dataset

module, 23
dn3.trainable.layers

module, 34
dn3.trainable.models

module, 31
dn3.trainable.processes

module, 39
dn3.transforms.batch

module, 46
dn3.transforms.instance

module, 45
dn3.transforms.preprocessors

module, 46
DN3ataset (class in dn3.data.dataset), 23
DN3BaseModel (class in dn3.trainable.models), 32
dump_dataset() (dn3.data.dataset.Dataset method),

25

51

DN3, Release 0.0.1

E
EEGNet (class in dn3.trainable.models), 33
EEGNetStrided (class in dn3.trainable.models), 33
EpochTorchRecording (class in dn3.data.dataset),

28
evaluate() (dn3.trainable.processes.BaseProcess

method), 40
event_mapping() (dn3.data.dataset.EpochTorchRecording

method), 28
Expand (class in dn3.trainable.layers), 35
ExperimentConfig (class in

dn3.configuratron.config), 21

F
fit() (dn3.trainable.processes.BaseProcess method),

40
fit() (dn3.trainable.processes.StandardClassification

method), 43
FixedScale (class in dn3.transforms.instance), 45
Flatten (class in dn3.trainable.layers), 36
forward() (dn3.trainable.layers.Concatenate

method), 34
forward() (dn3.trainable.layers.ConvBlock2D

method), 35
forward() (dn3.trainable.layers.DenseFilter method),

35
forward() (dn3.trainable.layers.DenseSpatialFilter

method), 35
forward() (dn3.trainable.layers.Expand method), 36
forward() (dn3.trainable.layers.Flatten method), 36
forward() (dn3.trainable.layers.IndexSelect method),

36
forward() (dn3.trainable.layers.Permute method), 36
forward() (dn3.trainable.layers.SpatialFilter

method), 37
forward() (dn3.trainable.layers.Squeeze method), 37
forward() (dn3.trainable.layers.TemporalFilter

method), 37
forward() (dn3.trainable.models.Classifier method),

31
forward() (dn3.trainable.models.DN3BaseModel

method), 32
forward() (dn3.trainable.processes.BaseProcess

method), 41
forward() (dn3.trainable.processes.LDAMLoss

method), 42
forward() (dn3.trainable.processes.StandardClassification

method), 44
freeze_features()

(dn3.trainable.models.Classifier method),
32

from_dataset() (dn3.trainable.models.Classifier
class method), 32

G
get_label_balance() (in module

dn3.trainable.processes), 44
get_sessions() (dn3.data.dataset.Dataset method),

26
get_targets() (dn3.data.dataset.Dataset method),

26
get_targets() (dn3.data.dataset.Thinker method),

29
get_thinkers() (dn3.data.dataset.Dataset method),

26
get_transform() (dn3.transforms.preprocessors.Preprocessor

method), 46

I
IndexSelect (class in dn3.trainable.layers), 36

L
LDAMLoss (class in dn3.trainable.processes), 42
lmso() (dn3.data.dataset.Dataset method), 26
load_best() (dn3.trainable.processes.BaseProcess

method), 42
LogRegNetwork (class in dn3.trainable.models), 33
loso() (dn3.data.dataset.Dataset method), 26

M
make_new_classification_layer()

(dn3.trainable.models.Classifier method),
32

make_new_classification_layer()
(dn3.trainable.models.StrideClassifier
method), 33

MappingDeep1010 (class in dn3.transforms.instance),
45

module
dn3.configuratron.config, 19
dn3.data.dataset, 23
dn3.trainable.layers, 34
dn3.trainable.models, 31
dn3.trainable.processes, 39
dn3.transforms.batch, 46
dn3.transforms.instance, 45
dn3.transforms.preprocessors, 46

N
new_channels() (dn3.transforms.instance.MappingDeep1010

method), 45
NoisyBlankDeep1010 (class in

dn3.transforms.instance), 46

P
parameters() (dn3.trainable.processes.BaseProcess

method), 42

52 Index

DN3, Release 0.0.1

Permute (class in dn3.trainable.layers), 36
predict() (dn3.trainable.processes.BaseProcess

method), 42
preprocess() (dn3.configuratron.config.RawOnTheFlyRecording

method), 21
preprocess() (dn3.data.dataset.Dataset method), 27
preprocess() (dn3.data.dataset.DN3ataset method),

24
preprocess() (dn3.data.dataset.EpochTorchRecording

method), 28
preprocess() (dn3.data.dataset.RawTorchRecording

method), 28
preprocess() (dn3.data.dataset.Thinker method), 29
Preprocessor (class in

dn3.transforms.preprocessors), 46

R
RawOnTheFlyRecording (class in

dn3.configuratron.config), 21
RawTorchRecording (class in dn3.data.dataset), 28

S
safe_mode() (dn3.data.dataset.Dataset method), 27
same_channel_sets() (in module

dn3.transforms.instance), 46
save_best() (dn3.trainable.processes.BaseProcess

method), 42
scan_toplevel() (dn3.configuratron.config.DatasetConfig

method), 21
sequence_length() (dn3.data.dataset.Dataset

property), 27
sequence_length() (dn3.data.dataset.DN3ataset

property), 24
sequence_length() (dn3.data.dataset.Thinker

property), 30
set_scheduler() (dn3.trainable.processes.BaseProcess

method), 42
sfreq() (dn3.data.dataset.Dataset property), 27
sfreq() (dn3.data.dataset.DN3ataset property), 24
sfreq() (dn3.data.dataset.Thinker property), 30
SpatialFilter (class in dn3.trainable.layers), 37
split() (dn3.data.dataset.Thinker method), 30
Squeeze (class in dn3.trainable.layers), 37
StandardClassification (class in

dn3.trainable.processes), 43
StrideClassifier (class in dn3.trainable.models),

33

T
TemporalFilter (class in dn3.trainable.layers), 37
Thinker (class in dn3.data.dataset), 29
TIDNet (class in dn3.trainable.models), 33
to_numpy() (dn3.data.dataset.DN3ataset method), 24

U
update_id_returns() (dn3.data.dataset.Dataset

method), 27

Z
ZScore (class in dn3.transforms.instance), 46

Index 53

	The Configuratron
	Datasets
	Metrics
	Trainables
	Transformations and Preprocessors
	Configuratron
	Datasets
	Neural Network Building Blocks
	Processes
	Transforms
	Indices and tables
	Python Module Index
	Index

